skip to main content


Search for: All records

Creators/Authors contains: "Holmes, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO 2 ) and methane (CH 4 ) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO 2 and CH 4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH 4 . These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’. 
    more » « less
  2. Abstract

    Stordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, toSphagnumbog underlain by permafrost, toEriophorum‐dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi‐decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi‐continuous measurement of CO2and CH4exchange, and 21 core profiles for210Pb and14C peat dating. Year‐round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m−2 y−1for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO2uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO2fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial‐scale levels (17–29 g C m−2 y−1) to moderate aCAR of the past century (72–81 g C m−2 y−1) to higher recent aCAR of 90–147 g C m−2 y−1. Recent permafrost collapse, greater inundation and vegetation response has made the landscape a stronger CO2sink, but this CO2sink is increasingly offset by rising CH4emissions, dominated by modern carbon as determined by14C. The higher CH4emissions result in higher net CO2‐equivalentemissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.

     
    more » « less